808 research outputs found

    Becoming classical: A possible influence on the quantum-to-classical transition

    Full text link
    Although cosmic expansion at very small distances is usually dismissed as entirely inconsequential, it appears that these extraordinarily small effects may in fact have a real and significant influence on our world. Calculations suggest that the minute recessional velocities associated with regions encompassed by extended bodies may have a role in creating the distinction between quantum and classical behavior. Using an uncertainty in position estimated from the spread in velocities associated with its size, the criterion that the uncertainty in position should be smaller than the extension of the object leads to a threshold size that could provide a fundamental limit distinguishing the realm of objects governed by classical laws from those governed by quantum mechanics.Comment: 2 pages, 0 figures, submitted to Nature for publication as a brief communicatio

    Interpretation of cosmological expansion effects on the quantum-classical transition

    Get PDF
    Recently, what appears to be a fundamental limit associated with the size of an object that separates the quantum behavior characterizing small objects from the classical behavior characterizing large objects has been derived from the Hubble velocity spread in an extended object. This threshold is now examined further and interpreted in terms of diffusion processes in stochastic quantum mechanics. This limiting size that separates quantum behavior from classical behavior is shown to correspond approximately to the diffusion distance of the object over the Hubble time.Comment: 8 pages, 0 figure
    corecore